Fibonacciho halda

V tomto kurzu se dozvíte, co je halda Fibonacci. Také najdete pracovní příklady různých operací na haldě fibonacci v C, C ++, Java a Python.

Fibonacciho halda je upravená forma binomické haldy s efektivnějšími haldy, než která je podporována binomickou a binární hromadou.

Na rozdíl od binární haldy může mít uzel více než dvě děti.

Fibonacciho halda se nazývá fibonacciho halda, protože stromy jsou konstruovány tak, že strom řádu n má v sobě alespoň Fn+2uzly, kde Fn+2je (n + 2)ndčíslo Fibonacciho.

Fibonacciho halda

Vlastnosti haldy Fibonacci

Důležité vlastnosti hromady Fibonacci jsou:

  1. Jedná se o sadu min heap- objednat stromy. (tj. rodič je vždy menší než děti.)
  2. Ukazatel je udržován na uzlu minimálního prvku.
  3. Skládá se ze sady označených uzlů. (Snížit klíčovou operaci)
  4. Stromy uvnitř hromady Fibonacci jsou neuspořádané, ale zakořeněné.

Paměťová reprezentace uzlů v haldě Fibonacci

Kořeny všech stromů jsou vzájemně propojeny pro rychlejší přístup. Podřízené uzly nadřazeného uzlu jsou vzájemně propojeny prostřednictvím kruhového dvojitě propojeného seznamu, jak je znázorněno níže.

Existují dvě hlavní výhody používání kruhového seznamu s dvojitým propojením.

  1. Odstranění uzlu ze stromu O(1)nějakou dobu trvá .
  2. Zřetězení dvou takových seznamů O(1)nějakou dobu trvá .
Struktura haldy Fibonacci

Operace na haldě Fibonacci

Vložení

Algoritmus

 insert (H, x) degree (x) = 0 p (x) = NIL child (x) = NIL left (x) = x right (x) = x mark (x) = FALSE concatenate the root list containing x with root seznam H, pokud min (H) == NIL nebo klíč (x) <klíč (min (H)), pak min (H) = xn (H) = n (H) + 1 

Vložení uzlu do již existující haldy se řídí následujícími kroky.

  1. Vytvořte nový uzel pro prvek.
  2. Zkontrolujte, zda je halda prázdná.
  3. Pokud je halda prázdná, nastavte nový uzel jako kořenový uzel a označte jej min.
  4. Jinak vložte uzel do kořenového seznamu a aktualizujte min.
Příklad vložení

Najít min

Minimální prvek je vždy dán ukazatelem min.

svaz

Spojení dvou hromádky fibonacci se skládá z následujících kroků.

  1. Zřetězte kořeny obou hromád.
  2. Aktualizujte min. Výběrem minimálního klíče z nových kořenových seznamů.
Spojení dvou hromad

Výpis min

Je to nejdůležitější operace na haldě fibonacci. V této operaci je uzel s minimální hodnotou odstraněn z haldy a strom je znovu upraven.

Postupují se podle následujících kroků:

  1. Odstraňte minimální uzel.
  2. Nastavte min-ukazatel na další kořen v kořenovém seznamu.
  3. Před odstraněním vytvořte pole velikosti rovnající se maximálnímu stupni stromů v haldě.
  4. Proveďte následující kroky (kroky 5-7), dokud nebude existovat více kořenů se stejným stupněm.
  5. Mapujte stupeň aktuálního kořene (min-ukazatel) na stupeň v poli.
  6. Mapujte stupeň dalšího kořene na stupeň v poli.
  7. Pokud existují více než dvě mapování pro stejný stupeň, použijte operaci sjednocení na tyto kořeny tak, aby byla zachována vlastnost min-heap (tj. Minimum je v kořenovém adresáři).

Implementaci výše uvedených kroků lze pochopit v níže uvedeném příkladu.

  1. Na haldě níže provedeme operaci min. Extrakce. Fibonacciho halda
  2. Odstraňte min uzel, přidejte všechny jeho podřízené uzly do kořenového seznamu a nastavte min-ukazatel na další kořen v kořenovém seznamu. Odstraňte minimální uzel
  3. Maximální stupeň ve stromu je 3. Vytvořte pole velikosti 4 a mapujte stupeň dalších kořenů pomocí pole. Vytvořte pole
  4. Zde mají 23 a 7 stejné tituly, takže je spojte. Spojte ty, kteří mají stejné tituly
  5. Opět platí, že 7 a 17 mají stejné stupně, takže je také spojte. Spojte ty, kteří mají stejné tituly
  6. Opět 7 a 24 mají stejný stupeň, takže je spojte. Spojte ty, kteří mají stejné tituly
  7. Mapujte další uzly. Mapujte zbývající uzly
  8. Opět platí, že 52 a 21 mají stejný titul, takže je spojte. Spojte ty, kteří mají stejné tituly
  9. Podobně sjednoťte 21 a 18. Spojte ty, kteří mají stejné tituly
  10. Namapujte zbývající kořen. Mapujte zbývající uzly
  11. Poslední hromada je. Poslední hromada fibonacci

Snížení klíče a odstranění uzlu

Toto jsou nejdůležitější operace, které jsou popsány v operacích zmenšení klíče a odstranění uzlu.

Python, Java a C / C ++ příklady

Python Java C C +
 # Fibonacci Heap in python import math # Creating fibonacci tree class FibonacciTree: def __init__(self, value): self.value = value self.child = () self.order = 0 # Adding tree at the end of the tree def add_at_end(self, t): self.child.append(t) self.order = self.order + 1 # Creating Fibonacci heap class FibonacciHeap: def __init__(self): self.trees = () self.least = None self.count = 0 # Insert a node def insert_node(self, value): new_tree = FibonacciTree(value) self.trees.append(new_tree) if (self.least is None or value y.value: x, y = y, x x.add_at_end(y) aux(order) = None order = order + 1 aux(order) = x self.least = None for k in aux: if k is not None: self.trees.append(k) if (self.least is None or k.value < self.least.value): self.least = k def floor_log(x): return math.frexp(x)(1) - 1 fibonacci_heap = FibonacciHeap() fibonacci_heap.insert_node(7) fibonacci_heap.insert_node(3) fibonacci_heap.insert_node(17) fibonacci_heap.insert_node(24) print('the minimum value of the fibonacci heap: ()'.format(fibonacci_heap.get_min())) print('the minimum value removed: ()'.format(fibonacci_heap.extract_min())) 
 // Operations on Fibonacci Heap in Java // Node creation class node ( node parent; node left; node right; node child; int degree; boolean mark; int key; public node() ( this.degree = 0; this.mark = false; this.parent = null; this.left = this; this.right = this; this.child = null; this.key = Integer.MAX_VALUE; ) node(int x) ( this(); this.key = x; ) void set_parent(node x) ( this.parent = x; ) node get_parent() ( return this.parent; ) void set_left(node x) ( this.left = x; ) node get_left() ( return this.left; ) void set_right(node x) ( this.right = x; ) node get_right() ( return this.right; ) void set_child(node x) ( this.child = x; ) node get_child() ( return this.child; ) void set_degree(int x) ( this.degree = x; ) int get_degree() ( return this.degree; ) void set_mark(boolean m) ( this.mark = m; ) boolean get_mark() ( return this.mark; ) void set_key(int x) ( this.key = x; ) int get_key() ( return this.key; ) ) public class fibHeap ( node min; int n; boolean trace; node found; public boolean get_trace() ( return trace; ) public void set_trace(boolean t) ( this.trace = t; ) public static fibHeap create_heap() ( return new fibHeap(); ) fibHeap() ( min = null; n = 0; trace = false; ) private void insert(node x) ( if (min == null) ( min = x; x.set_left(min); x.set_right(min); ) else ( x.set_right(min); x.set_left(min.get_left()); min.get_left().set_right(x); min.set_left(x); if (x.get_key() "); temp = temp.get_right(); ) while (temp != c); System.out.print(")"); ) ) public static void merge_heap(fibHeap H1, fibHeap H2, fibHeap H3) ( H3.min = H1.min; if (H1.min != null && H2.min != null) ( node t1 = H1.min.get_left(); node t2 = H2.min.get_left(); H1.min.set_left(t2); t1.set_right(H2.min); H2.min.set_left(t1); t2.set_right(H1.min); ) if (H1.min == null || (H2.min != null && H2.min.get_key() < H1.min.get_key())) H3.min = H2.min; H3.n = H1.n + H2.n; ) public int find_min() ( return this.min.get_key(); ) private void display_node(node z) ( System.out.println("right: " + ((z.get_right() == null) ? "-1" : z.get_right().get_key())); System.out.println("left: " + ((z.get_left() == null) ? "-1" : z.get_left().get_key())); System.out.println("child: " + ((z.get_child() == null) ? "-1" : z.get_child().get_key())); System.out.println("degree " + z.get_degree()); ) public int extract_min() ( node z = this.min; if (z != null) ( node c = z.get_child(); node k = c, p; if (c != null) ( do ( p = c.get_right(); insert(c); c.set_parent(null); c = p; ) while (c != null && c != k); ) z.get_left().set_right(z.get_right()); z.get_right().set_left(z.get_left()); z.set_child(null); if (z == z.get_right()) this.min = null; else ( this.min = z.get_right(); this.consolidate(); ) this.n -= 1; return z.get_key(); ) return Integer.MAX_VALUE; ) public void consolidate() ( double phi = (1 + Math.sqrt(5)) / 2; int Dofn = (int) (Math.log(this.n) / Math.log(phi)); node() A = new node(Dofn + 1); for (int i = 0; i y.get_key()) ( node temp = x; x = y; y = temp; w = x; ) fib_heap_link(y, x); check = x; A(d) = null; d += 1; ) A(d) = x; w = w.get_right(); ) while (w != null && w != check); this.min = null; for (int i = 0; i <= Dofn; ++i) ( if (A(i) != null) ( insert(A(i)); ) ) ) ) // Linking operation private void fib_heap_link(node y, node x) ( y.get_left().set_right(y.get_right()); y.get_right().set_left(y.get_left()); node p = x.get_child(); if (p == null) ( y.set_right(y); y.set_left(y); ) else ( y.set_right(p); y.set_left(p.get_left()); p.get_left().set_right(y); p.set_left(y); ) y.set_parent(x); x.set_child(y); x.set_degree(x.get_degree() + 1); y.set_mark(false); ) // Search operation private void find(int key, node c) ( if (found != null || c == null) return; else ( node temp = c; do ( if (key == temp.get_key()) found = temp; else ( node k = temp.get_child(); find(key, k); temp = temp.get_right(); ) ) while (temp != c && found == null); ) ) public node find(int k) ( found = null; find(k, this.min); return found; ) public void decrease_key(int key, int nval) ( node x = find(key); decrease_key(x, nval); ) // Decrease key operation private void decrease_key(node x, int k) ( if (k> x.get_key()) return; x.set_key(k); node y = x.get_parent(); if (y != null && x.get_key() < y.get_key()) ( cut(x, y); cascading_cut(y); ) if (x.get_key() < min.get_key()) min = x; ) // Cut operation private void cut(node x, node y) ( x.get_right().set_left(x.get_left()); x.get_left().set_right(x.get_right()); y.set_degree(y.get_degree() - 1); x.set_right(null); x.set_left(null); insert(x); x.set_parent(null); x.set_mark(false); ) private void cascading_cut(node y) ( node z = y.get_parent(); if (z != null) ( if (y.get_mark() == false) y.set_mark(true); else ( cut(y, z); cascading_cut(z); ) ) ) // Delete operations public void delete(node x) ( decrease_key(x, Integer.MIN_VALUE); int p = extract_min(); ) public static void main(String() args) ( fibHeap obj = create_heap(); obj.insert(7); obj.insert(26); obj.insert(30); obj.insert(39); obj.insert(10); obj.display(); System.out.println(obj.extract_min()); obj.display(); System.out.println(obj.extract_min()); obj.display(); System.out.println(obj.extract_min()); obj.display(); System.out.println(obj.extract_min()); obj.display(); System.out.println(obj.extract_min()); obj.display(); ) )
 // Operations on a Fibonacci heap in C #include #include #include #include typedef struct _NODE ( int key; int degree; struct _NODE *left_sibling; struct _NODE *right_sibling; struct _NODE *parent; struct _NODE *child; bool mark; bool visited; ) NODE; typedef struct fibanocci_heap ( int n; NODE *min; int phi; int degree; ) FIB_HEAP; FIB_HEAP *make_fib_heap(); void insertion(FIB_HEAP *H, NODE *new, int val); NODE *extract_min(FIB_HEAP *H); void consolidate(FIB_HEAP *H); void fib_heap_link(FIB_HEAP *H, NODE *y, NODE *x); NODE *find_min_node(FIB_HEAP *H); void decrease_key(FIB_HEAP *H, NODE *node, int key); void cut(FIB_HEAP *H, NODE *node_to_be_decrease, NODE *parent_node); void cascading_cut(FIB_HEAP *H, NODE *parent_node); void Delete_Node(FIB_HEAP *H, int dec_key); FIB_HEAP *make_fib_heap() ( FIB_HEAP *H; H = (FIB_HEAP *)malloc(sizeof(FIB_HEAP)); H->n = 0; H->min = NULL; H->phi = 0; H->degree = 0; return H; ) // Printing the heap void print_heap(NODE *n) ( NODE *x; for (x = n;; x = x->right_sibling) ( if (x->child == NULL) ( printf("node with no child (%d) ", x->key); ) else ( printf("NODE(%d) with child (%d)", x->key, x->child->key); print_heap(x->child); ) if (x->right_sibling == n) ( break; ) ) ) // Inserting nodes void insertion(FIB_HEAP *H, NODE *new, int val) ( new = (NODE *)malloc(sizeof(NODE)); new->key = val; new->degree = 0; new->mark = false; new->parent = NULL; new->child = NULL; new->visited = false; new->left_sibling = new; new->right_sibling = new; if (H->min == NULL) ( H->min = new; ) else ( H->min->left_sibling->right_sibling = new; new->right_sibling = H->min; new->left_sibling = H->min->left_sibling; H->min->left_sibling = new; if (new->key min->key) ( H->min = new; ) ) (H->n)++; ) // Find min node NODE *find_min_node(FIB_HEAP *H) ( if (H == NULL) ( printf(" Fibonacci heap not yet created "); return NULL; ) else return H->min; ) // Union operation FIB_HEAP *unionHeap(FIB_HEAP *H1, FIB_HEAP *H2) ( FIB_HEAP *Hnew; Hnew = make_fib_heap(); Hnew->min = H1->min; NODE *temp1, *temp2; temp1 = Hnew->min->right_sibling; temp2 = H2->min->left_sibling; Hnew->min->right_sibling->left_sibling = H2->min->left_sibling; Hnew->min->right_sibling = H2->min; H2->min->left_sibling = Hnew->min; temp2->right_sibling = temp1; if ((H1->min == NULL) || (H2->min != NULL && H2->min->key min->key)) Hnew->min = H2->min; Hnew->n = H1->n + H2->n; return Hnew; ) // Calculate the degree int cal_degree(int n) ( int count = 0; while (n> 0) ( n = n / 2; count++; ) return count; ) // Consolidate function void consolidate(FIB_HEAP *H) ( int degree, i, d; degree = cal_degree(H->n); NODE *A(degree), *x, *y, *z; for (i = 0; i min; do ( d = x->degree; while (A(d) != NULL) ( y = A(d); if (x->key> y->key) ( NODE *exchange_help; exchange_help = x; x = y; y = exchange_help; ) if (y == H->min) H->min = x; fib_heap_link(H, y, x); if (y->right_sibling == x) H->min = x; A(d) = NULL; d++; ) A(d) = x; x = x->right_sibling; ) while (x != H->min); H->min = NULL; for (i = 0; i left_sibling = A(i); A(i)->right_sibling = A(i); if (H->min == NULL) ( H->min = A(i); ) else ( H->min->left_sibling->right_sibling = A(i); A(i)->right_sibling = H->min; A(i)->left_sibling = H->min->left_sibling; H->min->left_sibling = A(i); if (A(i)->key min->key) ( H->min = A(i); ) ) if (H->min == NULL) ( H->min = A(i); ) else if (A(i)->key min->key) ( H->min = A(i); ) ) ) ) // Linking void fib_heap_link(FIB_HEAP *H, NODE *y, NODE *x) ( y->right_sibling->left_sibling = y->left_sibling; y->left_sibling->right_sibling = y->right_sibling; if (x->right_sibling == x) H->min = x; y->left_sibling = y; y->right_sibling = y; y->parent = x; if (x->child == NULL) ( x->child = y; ) y->right_sibling = x->child; y->left_sibling = x->child->left_sibling; x->child->left_sibling->right_sibling = y; x->child->left_sibling = y; if ((y->key) child->key)) x->child = y; (x->degree)++; ) // Extract min NODE *extract_min(FIB_HEAP *H) ( if (H->min == NULL) printf(" The heap is empty"); else ( NODE *temp = H->min; NODE *pntr; pntr = temp; NODE *x = NULL; if (temp->child != NULL) ( x = temp->child; do ( pntr = x->right_sibling; (H->min->left_sibling)->right_sibling = x; x->right_sibling = H->min; x->left_sibling = H->min->left_sibling; H->min->left_sibling = x; if (x->key min->key) H->min = x; x->parent = NULL; x = pntr; ) while (pntr != temp->child); ) (temp->left_sibling)->right_sibling = temp->right_sibling; (temp->right_sibling)->left_sibling = temp->left_sibling; H->min = temp->right_sibling; if (temp == temp->right_sibling && temp->child == NULL) H->min = NULL; else ( H->min = temp->right_sibling; consolidate(H); ) H->n = H->n - 1; return temp; ) return H->min; ) void cut(FIB_HEAP *H, NODE *node_to_be_decrease, NODE *parent_node) ( NODE *temp_parent_check; if (node_to_be_decrease == node_to_be_decrease->right_sibling) parent_node->child = NULL; node_to_be_decrease->left_sibling->right_sibling = node_to_be_decrease->right_sibling; node_to_be_decrease->right_sibling->left_sibling = node_to_be_decrease->left_sibling; if (node_to_be_decrease == parent_node->child) parent_node->child = node_to_be_decrease->right_sibling; (parent_node->degree)--; node_to_be_decrease->left_sibling = node_to_be_decrease; node_to_be_decrease->right_sibling = node_to_be_decrease; H->min->left_sibling->right_sibling = node_to_be_decrease; node_to_be_decrease->right_sibling = H->min; node_to_be_decrease->left_sibling = H->min->left_sibling; H->min->left_sibling = node_to_be_decrease; node_to_be_decrease->parent = NULL; node_to_be_decrease->mark = false; ) void cascading_cut(FIB_HEAP *H, NODE *parent_node) ( NODE *aux; aux = parent_node->parent; if (aux != NULL) ( if (parent_node->mark == false) ( parent_node->mark = true; ) else ( cut(H, parent_node, aux); cascading_cut(H, aux); ) ) ) void decrease_key(FIB_HEAP *H, NODE *node_to_be_decrease, int new_key) ( NODE *parent_node; if (H == NULL) ( printf(" FIbonacci heap not created "); return; ) if (node_to_be_decrease == NULL) ( printf("Node is not in the heap"); ) else ( if (node_to_be_decrease->key key = new_key; parent_node = node_to_be_decrease->parent; if ((parent_node != NULL) && (node_to_be_decrease->key key)) ( printf(" cut called"); cut(H, node_to_be_decrease, parent_node); printf(" cascading cut called"); cascading_cut(H, parent_node); ) if (node_to_be_decrease->key min->key) ( H->min = node_to_be_decrease; ) ) ) ) void *find_node(FIB_HEAP *H, NODE *n, int key, int new_key) ( NODE *find_use = n; NODE *f = NULL; find_use->visited = true; if (find_use->key == key) ( find_use->visited = false; f = find_use; decrease_key(H, f, new_key); ) if (find_use->child != NULL) ( find_node(H, find_use->child, key, new_key); ) if ((find_use->right_sibling->visited != true)) ( find_node(H, find_use->right_sibling, key, new_key); ) find_use->visited = false; ) FIB_HEAP *insertion_procedure() ( FIB_HEAP *temp; int no_of_nodes, ele, i; NODE *new_node; temp = (FIB_HEAP *)malloc(sizeof(FIB_HEAP)); temp = NULL; if (temp == NULL) ( temp = make_fib_heap(); ) printf(" enter number of nodes to be insert = "); scanf("%d", &no_of_nodes); for (i = 1; i min, dec_key, -5000); p = extract_min(H); if (p != NULL) printf(" Node deleted"); else printf(" Node not deleted:some error"); ) int main(int argc, char **argv) ( NODE *new_node, *min_node, *extracted_min, *node_to_be_decrease, *find_use; FIB_HEAP *heap, *h1, *h2; int operation_no, new_key, dec_key, ele, i, no_of_nodes; heap = (FIB_HEAP *)malloc(sizeof(FIB_HEAP)); heap = NULL; while (1) ( printf(" Operations 1. Create Fibonacci heap 2. Insert nodes into fibonacci heap 3. Find min 4. Union 5. Extract min 6. Decrease key 7.Delete node 8. print heap 9. exit enter operation_no = "); scanf("%d", &operation_no); switch (operation_no) ( case 1: heap = make_fib_heap(); break; case 2: if (heap == NULL) ( heap = make_fib_heap(); ) printf(" enter number of nodes to be insert = "); scanf("%d", &no_of_nodes); for (i = 1; i key); break; case 4: if (heap == NULL) ( printf(" no FIbonacci heap created "); break; ) h1 = insertion_procedure(); heap = unionHeap(heap, h1); printf("Unified Heap:"); print_heap(heap->min); break; case 5: if (heap == NULL) printf("Empty Fibonacci heap"); else ( extracted_min = extract_min(heap); printf(" min value = %d", extracted_min->key); printf(" Updated heap: "); print_heap(heap->min); ) break; case 6: if (heap == NULL) printf("Fibonacci heap is empty"); else ( printf(" node to be decreased = "); scanf("%d", &dec_key); printf(" enter the new key = "); scanf("%d", &new_key); find_use = heap->min; find_node(heap, find_use, dec_key, new_key); printf(" Key decreased- Corresponding heap:"); print_heap(heap->min); ) break; case 7: if (heap == NULL) printf("Fibonacci heap is empty"); else ( printf(" Enter node key to be deleted = "); scanf("%d", &dec_key); Delete_Node(heap, dec_key); printf(" Node Deleted- Corresponding heap:"); print_heap(heap->min); break; ) case 8: print_heap(heap->min); break; case 9: free(new_node); free(heap); exit(0); default: printf("Invalid choice "); ) ) )
 // Operations on a Fibonacci heap in C++ #include #include #include using namespace std; // Node creation struct node ( int n; int degree; node *parent; node *child; node *left; node *right; char mark; char C; ); // Implementation of Fibonacci heap class FibonacciHeap ( private: int nH; node *H; public: node *InitializeHeap(); int Fibonnaci_link(node *, node *, node *); node *Create_node(int); node *Insert(node *, node *); node *Union(node *, node *); node *Extract_Min(node *); int Consolidate(node *); int Display(node *); node *Find(node *, int); int Decrease_key(node *, int, int); int Delete_key(node *, int); int Cut(node *, node *, node *); int Cascase_cut(node *, node *); FibonacciHeap() ( H = InitializeHeap(); ) ); // Initialize heap node *FibonacciHeap::InitializeHeap() ( node *np; np = NULL; return np; ) // Create node node *FibonacciHeap::Create_node(int value) ( node *x = new node; x->n = value; return x; ) // Insert node node *FibonacciHeap::Insert(node *H, node *x) ( x->degree = 0; x->parent = NULL; x->child = NULL; x->left = x; x->right = x; x->mark = 'F'; x->C = 'N'; if (H != NULL) ( (H->left)->right = x; x->right = H; x->left = H->left; H->left = x; if (x->n n) H = x; ) else ( H = x; ) nH = nH + 1; return H; ) // Create linking int FibonacciHeap::Fibonnaci_link(node *H1, node *y, node *z) ( (y->left)->right = y->right; (y->right)->left = y->left; if (z->right == z) H1 = z; y->left = y; y->right = y; y->parent = z; if (z->child == NULL) z->child = y; y->right = z->child; y->left = (z->child)->left; ((z->child)->left)->right = y; (z->child)->left = y; if (y->n child)->n) z->child = y; z->degree++; ) // Union Operation node *FibonacciHeap::Union(node *H1, node *H2) ( node *np; node *H = InitializeHeap(); H = H1; (H->left)->right = H2; (H2->left)->right = H; np = H->left; H->left = H2->left; H2->left = np; return H; ) // Display the heap int FibonacciHeap::Display(node *H) ( node *p = H; if (p == NULL) ( cout << "Empty Heap" << endl; return 0; ) cout << "Root Nodes: " << endl; do ( cout  right; if (p != H) ( cout <"; ) ) while (p != H && p->right != NULL); cout <  child != NULL) x = z->child; if (x != NULL) ( ptr = x; do ( np = x->right; (H1->left)->right = x; x->right = H1; x->left = H1->left; H1->left = x; if (x->n n) H1 = x; x->parent = NULL; x = np; ) while (np != ptr); ) (z->left)->right = z->right; (z->right)->left = z->left; H1 = z->right; if (z == z->right && z->child == NULL) H = NULL; else ( H1 = z->right; Consolidate(H1); ) nH = nH - 1; return p; ) // Consolidation Function int FibonacciHeap::Consolidate(node *H1) ( int d, i; float f = (log(nH)) / (log(2)); int D = f; node *A(D); for (i = 0; i right; d = x->degree; while (A(d) != NULL) ( y = A(d); if (x->n> y->n) ( np = x; x = y; y = np; ) if (y == H1) H1 = x; Fibonnaci_link(H1, y, x); if (x->right == x) H1 = x; A(d) = NULL; d = d + 1; ) A(d) = x; x = x->right; ) while (x != H1); H = NULL; for (int j = 0; j left = A(j); A(j)->right = A(j); if (H != NULL) ( (H->left)->right = A(j); A(j)->right = H; A(j)->left = H->left; H->left = A(j); if (A(j)->n n) H = A(j); ) else ( H = A(j); ) if (H == NULL) H = A(j); else if (A(j)->n n) H = A(j); ) ) ) // Decrease Key Operation int FibonacciHeap::Decrease_key(node *H1, int x, int k) ( node *y; if (H1 == NULL) ( cout << "The Heap is Empty" << endl; return 0; ) node *ptr = Find(H1, x); if (ptr == NULL) ( cout << "Node not found in the Heap"  parent; if (y != NULL && ptr->n n) ( Cut(H1, ptr, y); Cascase_cut(H1, y); ) if (ptr->n n) H = ptr; return 0; ) // Cutting Function int FibonacciHeap::Cut(node *H1, node *x, node *y) ( if (x == x->right) y->child = NULL; (x->left)->right = x->right; (x->right)->left = x->left; if (x == y->child) y->child = x->right; y->degree = y->degree - 1; x->right = x; x->left = x; (H1->left)->right = x; x->right = H1; x->left = H1->left; H1->left = x; x->parent = NULL; x->mark = 'F'; ) // Cascade cut int FibonacciHeap::Cascase_cut(node *H1, node *y) ( node *z = y->parent; if (z != NULL) ( if (y->mark == 'F') ( y->mark = 'T'; ) else ( Cut(H1, y, z); Cascase_cut(H1, z); ) ) ) // Search function node *FibonacciHeap::Find(node *H, int k) ( node *x = H; x->C = 'Y'; node *p = NULL; if (x->n == k) ( p = x; x->C = 'N'; return p; ) if (p == NULL) ( if (x->child != NULL) p = Find(x->child, k); if ((x->right)->C != 'Y') p = Find(x->right, k); ) x->C = 'N'; return p; ) // Deleting key int FibonacciHeap::Delete_key(node *H1, int k) ( node *np = NULL; int t; t = Decrease_key(H1, k, -5000); if (!t) np = Extract_Min(H); if (np != NULL) cout << "Key Deleted" << endl; else cout << "Key not Deleted" << endl; return 0; ) int main() ( int n, m, l; FibonacciHeap fh; node *p; node *H; H = fh.InitializeHeap(); p = fh.Create_node(7); H = fh.Insert(H, p); p = fh.Create_node(3); H = fh.Insert(H, p); p = fh.Create_node(17); H = fh.Insert(H, p); p = fh.Create_node(24); H = fh.Insert(H, p); fh.Display(H); p = fh.Extract_Min(H); if (p != NULL) cout << "The node with minimum key: "    

Complexities

Insertion O(1)
Find Min O(1)
Union O(1)
Extract Min O(log n)
Decrease Key O(1)
Delete Node O(log n)

Fibonacci Heap Applications

  1. To improve the asymptotic running time of Dijkstra's algorithm.

Zajímavé články...