Huffmanův kódovací algoritmus

V tomto kurzu se dozvíte, jak funguje Huffman Coding. Také najdete pracovní příklady Huffmanova kódování v jazycích C, C ++, Java a Python.

Huffman Coding je technika komprese dat za účelem zmenšení jejich velikosti bez ztráty jakýchkoli podrobností. Poprvé byl vyvinut Davidem Huffmanem.

Huffmanovo kódování je obecně užitečné ke kompresi dat, ve kterých se často vyskytují znaky.

Jak funguje Huffman Coding?

Předpokládejme, že řetězec níže bude odeslán po síti.

Počáteční řetězec

Každá postava zabírá 8 bitů. Ve výše uvedeném řetězci je celkem 15 znaků. 8 * 15 = 120K odeslání tohoto řetězce je tedy zapotřebí celkem bitů.

Pomocí techniky Huffman Coding můžeme komprimovat řetězec na menší velikost.

Huffmanovo kódování nejprve vytvoří strom pomocí frekvencí znaku a poté vygeneruje kód pro každý znak.

Jakmile jsou data zakódována, musí být dekódována. Dekódování se provádí pomocí stejného stromu.

Huffman Coding zabraňuje jakékoli nejednoznačnosti v procesu dekódování pomocí konceptu prefixového kódu, tj. kód spojený se znakem by neměl být přítomen v předponě jiného kódu. Strom vytvořený výše pomáhá udržovat vlastnost.

Huffmanovo kódování se provádí pomocí následujících kroků.

  1. Vypočítejte frekvenci každého znaku v řetězci. Frekvence řetězce
  2. Seřaďte znaky ve vzestupném pořadí podle frekvence. Ty jsou uloženy v prioritní frontě Q. Znaky seřazené podle frekvence
  3. Vytvořte každý jedinečný znak jako listový uzel.
  4. Vytvořte prázdný uzel z. Přiřaďte minimální frekvenci levému dítěti z a přiřaďte druhou minimální frekvenci pravému dítěti z. Nastavte hodnotu z jako součet výše uvedených dvou minimálních frekvencí. Získání součtu nejmenších čísel
  5. Odeberte tyto dvě minimální frekvence z Q a přidejte součet do seznamu frekvencí (* označte vnitřní uzly na obrázku výše).
  6. Vložte uzel z do stromu.
  7. Opakujte kroky 3 až 5 pro všechny znaky. Opakujte kroky 3 až 5 pro všechny znaky. Opakujte kroky 3 až 5 pro všechny znaky.
  8. Pro každý nelistový uzel přiřaďte 0 levému okraji a 1 pravému okraji. Přiřaďte 0 levému okraji a 1 pravému okraji

Pro odeslání výše uvedeného řetězce po síti musíme odeslat strom i výše uvedený komprimovaný kód. Celková velikost je uvedena v tabulce níže.

Charakter Frekvence Kód Velikost
A 5 11 5 * 2 = 10
B 1 100 1 * 3 = 3
C 6 0 6 * 1 = 6
D 3 101 3 * 3 = 9
4 * 8 = 32 bitů 15 bitů 28 bitů

Bez kódování byla celková velikost řetězce 120 bitů. Po kódování se velikost zmenší na 32 + 15 + 28 = 75.

Dekódování kódu

Pro dekódování kódu můžeme vzít kód a procházet stromem, abychom našli znak.

Necháme 101 dekódovat, můžeme procházet od kořene jako na obrázku níže.

Dekódování

Huffmanův kódovací algoritmus

vytvořte prioritní frontu Q skládající se z každého jedinečného znaku. seřadit podle vzestupného pořadí jejich frekvencí. pro všechny jedinečné znaky: vytvořte newNode extrahujte minimální hodnotu z Q a přiřaďte ji leftChild of newNode extrahujte minimální hodnotu z Q a přiřaďte ji rightChild of newNode vypočítat součet těchto dvou minimálních hodnot a přiřadit ji k hodnotě newNode insert tento newNode do stromu vrátí rootNode

Python, Java a C / C ++ příklady

Python Java C C ++
 # Huffman Coding in python string = 'BCAADDDCCACACAC' # Creating tree nodes class NodeTree(object): def __init__(self, left=None, right=None): self.left = left self.right = right def children(self): return (self.left, self.right) def nodes(self): return (self.left, self.right) def __str__(self): return '%s_%s' % (self.left, self.right) # Main function implementing huffman coding def huffman_code_tree(node, left=True, binString=''): if type(node) is str: return (node: binString) (l, r) = node.children() d = dict() d.update(huffman_code_tree(l, True, binString + '0')) d.update(huffman_code_tree(r, False, binString + '1')) return d # Calculating frequency freq = () for c in string: if c in freq: freq(c) += 1 else: freq(c) = 1 freq = sorted(freq.items(), key=lambda x: x(1), reverse=True) nodes = freq while len(nodes)> 1: (key1, c1) = nodes(-1) (key2, c2) = nodes(-2) nodes = nodes(:-2) node = NodeTree(key1, key2) nodes.append((node, c1 + c2)) nodes = sorted(nodes, key=lambda x: x(1), reverse=True) huffmanCode = huffman_code_tree(nodes(0)(0)) print(' Char | Huffman code ') print('----------------------') for (char, frequency) in freq: print(' %-4r |%12s' % (char, huffmanCode(char)))
 // Huffman Coding in Java import java.util.PriorityQueue; import java.util.Comparator; class HuffmanNode ( int item; char c; HuffmanNode left; HuffmanNode right; ) // For comparing the nodes class ImplementComparator implements Comparator ( public int compare(HuffmanNode x, HuffmanNode y) ( return x.item - y.item; ) ) // IMplementing the huffman algorithm public class Huffman ( public static void printCode(HuffmanNode root, String s) ( if (root.left == null && root.right == null && Character.isLetter(root.c)) ( System.out.println(root.c + " | " + s); return; ) printCode(root.left, s + "0"); printCode(root.right, s + "1"); ) public static void main(String() args) ( int n = 4; char() charArray = ( 'A', 'B', 'C', 'D' ); int() charfreq = ( 5, 1, 6, 3 ); PriorityQueue q = new PriorityQueue(n, new ImplementComparator()); for (int i = 0; i 1) ( HuffmanNode x = q.peek(); q.poll(); HuffmanNode y = q.peek(); q.poll(); HuffmanNode f = new HuffmanNode(); f.item = x.item + y.item; f.c = '-'; f.left = x; f.right = y; root = f; q.add(f); ) System.out.println(" Char | Huffman code "); System.out.println("--------------------"); printCode(root, ""); ) )
 // Huffman Coding in C #include #include #define MAX_TREE_HT 50 struct MinHNode ( char item; unsigned freq; struct MinHNode *left, *right; ); struct MinHeap ( unsigned size; unsigned capacity; struct MinHNode **array; ); // Create nodes struct MinHNode *newNode(char item, unsigned freq) ( struct MinHNode *temp = (struct MinHNode *)malloc(sizeof(struct MinHNode)); temp->left = temp->right = NULL; temp->item = item; temp->freq = freq; return temp; ) // Create min heap struct MinHeap *createMinH(unsigned capacity) ( struct MinHeap *minHeap = (struct MinHeap *)malloc(sizeof(struct MinHeap)); minHeap->size = 0; minHeap->capacity = capacity; minHeap->array = (struct MinHNode **)malloc(minHeap->capacity * sizeof(struct MinHNode *)); return minHeap; ) // Function to swap void swapMinHNode(struct MinHNode **a, struct MinHNode **b) ( struct MinHNode *t = *a; *a = *b; *b = t; ) // Heapify void minHeapify(struct MinHeap *minHeap, int idx) ( int smallest = idx; int left = 2 * idx + 1; int right = 2 * idx + 2; if (left size && minHeap->array(left)->freq array(smallest)->freq) smallest = left; if (right size && minHeap->array(right)->freq array(smallest)->freq) smallest = right; if (smallest != idx) ( swapMinHNode(&minHeap->array(smallest), &minHeap->array(idx)); minHeapify(minHeap, smallest); ) ) // Check if size if 1 int checkSizeOne(struct MinHeap *minHeap) ( return (minHeap->size == 1); ) // Extract min struct MinHNode *extractMin(struct MinHeap *minHeap) ( struct MinHNode *temp = minHeap->array(0); minHeap->array(0) = minHeap->array(minHeap->size - 1); --minHeap->size; minHeapify(minHeap, 0); return temp; ) // Insertion function void insertMinHeap(struct MinHeap *minHeap, struct MinHNode *minHeapNode) ( ++minHeap->size; int i = minHeap->size - 1; while (i && minHeapNode->freq array((i - 1) / 2)->freq) ( minHeap->array(i) = minHeap->array((i - 1) / 2); i = (i - 1) / 2; ) minHeap->array(i) = minHeapNode; ) void buildMinHeap(struct MinHeap *minHeap) ( int n = minHeap->size - 1; int i; for (i = (n - 1) / 2; i>= 0; --i) minHeapify(minHeap, i); ) int isLeaf(struct MinHNode *root) ( return !(root->left) && !(root->right); ) struct MinHeap *createAndBuildMinHeap(char item(), int freq(), int size) ( struct MinHeap *minHeap = createMinH(size); for (int i = 0; i array(i) = newNode(item(i), freq(i)); minHeap->size = size; buildMinHeap(minHeap); return minHeap; ) struct MinHNode *buildHuffmanTree(char item(), int freq(), int size) ( struct MinHNode *left, *right, *top; struct MinHeap *minHeap = createAndBuildMinHeap(item, freq, size); while (!checkSizeOne(minHeap)) ( left = extractMin(minHeap); right = extractMin(minHeap); top = newNode('$', left->freq + right->freq); top->left = left; top->right = right; insertMinHeap(minHeap, top); ) return extractMin(minHeap); ) void printHCodes(struct MinHNode *root, int arr(), int top) ( if (root->left) ( arr(top) = 0; printHCodes(root->left, arr, top + 1); ) if (root->right) ( arr(top) = 1; printHCodes(root->right, arr, top + 1); ) if (isLeaf(root)) ( printf(" %c | ", root->item); printArray(arr, top); ) ) // Wrapper function void HuffmanCodes(char item(), int freq(), int size) ( struct MinHNode *root = buildHuffmanTree(item, freq, size); int arr(MAX_TREE_HT), top = 0; printHCodes(root, arr, top); ) // Print the array void printArray(int arr(), int n) ( int i; for (i = 0; i < n; ++i) printf("%d", arr(i)); printf(""); ) int main() ( char arr() = ('A', 'B', 'C', 'D'); int freq() = (5, 1, 6, 3); int size = sizeof(arr) / sizeof(arr(0)); printf(" Char | Huffman code "); printf("--------------------"); HuffmanCodes(arr, freq, size); )
 // Huffman Coding in C++ #include using namespace std; #define MAX_TREE_HT 50 struct MinHNode ( unsigned freq; char item; struct MinHNode *left, *right; ); struct MinH ( unsigned size; unsigned capacity; struct MinHNode **array; ); // Creating Huffman tree node struct MinHNode *newNode(char item, unsigned freq) ( struct MinHNode *temp = (struct MinHNode *)malloc(sizeof(struct MinHNode)); temp->left = temp->right = NULL; temp->item = item; temp->freq = freq; return temp; ) // Create min heap using given capacity struct MinH *createMinH(unsigned capacity) ( struct MinH *minHeap = (struct MinH *)malloc(sizeof(struct MinH)); minHeap->size = 0; minHeap->capacity = capacity; minHeap->array = (struct MinHNode **)malloc(minHeap->capacity * sizeof(struct MinHNode *)); return minHeap; ) // Swap function void swapMinHNode(struct MinHNode **a, struct MinHNode **b) ( struct MinHNode *t = *a; *a = *b; *b = t; ) // Heapify void minHeapify(struct MinH *minHeap, int idx) ( int smallest = idx; int left = 2 * idx + 1; int right = 2 * idx + 2; if (left size && minHeap->array(left)->freq array(smallest)->freq) smallest = left; if (right size && minHeap->array(right)->freq array(smallest)->freq) smallest = right; if (smallest != idx) ( swapMinHNode(&minHeap->array(smallest), &minHeap->array(idx)); minHeapify(minHeap, smallest); ) ) // Check if size if 1 int checkSizeOne(struct MinH *minHeap) ( return (minHeap->size == 1); ) // Extract the min struct MinHNode *extractMin(struct MinH *minHeap) ( struct MinHNode *temp = minHeap->array(0); minHeap->array(0) = minHeap->array(minHeap->size - 1); --minHeap->size; minHeapify(minHeap, 0); return temp; ) // Insertion void insertMinHeap(struct MinH *minHeap, struct MinHNode *minHeapNode) ( ++minHeap->size; int i = minHeap->size - 1; while (i && minHeapNode->freq array((i - 1) / 2)->freq) ( minHeap->array(i) = minHeap->array((i - 1) / 2); i = (i - 1) / 2; ) minHeap->array(i) = minHeapNode; ) // BUild min heap void buildMinHeap(struct MinH *minHeap) ( int n = minHeap->size - 1; int i; for (i = (n - 1) / 2; i>= 0; --i) minHeapify(minHeap, i); ) int isLeaf(struct MinHNode *root) ( return !(root->left) && !(root->right); ) struct MinH *createAndBuildMinHeap(char item(), int freq(), int size) ( struct MinH *minHeap = createMinH(size); for (int i = 0; i array(i) = newNode(item(i), freq(i)); minHeap->size = size; buildMinHeap(minHeap); return minHeap; ) struct MinHNode *buildHfTree(char item(), int freq(), int size) ( struct MinHNode *left, *right, *top; struct MinH *minHeap = createAndBuildMinHeap(item, freq, size); while (!checkSizeOne(minHeap)) ( left = extractMin(minHeap); right = extractMin(minHeap); top = newNode('$', left->freq + right->freq); top->left = left; top->right = right; insertMinHeap(minHeap, top); ) return extractMin(minHeap); ) void printHCodes(struct MinHNode *root, int arr(), int top) ( if (root->left) ( arr(top) = 0; printHCodes(root->left, arr, top + 1); ) if (root->right) ( arr(top) = 1; printHCodes(root->right, arr, top + 1); ) if (isLeaf(root)) ( cout 

Huffman Coding Complexity

The time complexity for encoding each unique character based on its frequency is O(nlog n).

Extracting minimum frequency from the priority queue takes place 2*(n-1) times and its complexity is O(log n). Thus the overall complexity is O(nlog n).

Huffman Coding Applications

  • Huffman coding is used in conventional compression formats like GZIP, BZIP2, PKZIP, etc.
  • For text and fax transmissions.

Zajímavé články...