Vložení do červeno-černého stromu

V tomto výukovém programu se naučíte, jak lze nový uzel vložit do červeno-černého stromu. Také najdete pracovní příklady vložení provedených na červeno-černém stromě v C, C ++, Javě a Pythonu.

Červeno-černý strom je samovyvažující binární vyhledávací strom, ve kterém každý uzel obsahuje další bit pro označení barvy uzlu, buď červenou nebo černou.

Před čtením tohoto článku si přečtěte článek o červeno-černém stromě.

Při vkládání nového uzlu je nový uzel vždy vložen jako ČERVENÝ uzel. Po vložení nového uzlu, pokud strom porušuje vlastnosti červeno-černého stromu, provedeme následující operace.

  1. Přebarvit
  2. Otáčení

Algoritmus pro vložení nového uzlu

Při vkládání nového prvku do červeno-černého stromu se postupuje podle následujících kroků:

  1. Be newNode: Nový uzel
  2. Nechť y je list (tj. NIL) A xkořen stromu. Nový uzel se vloží do následujícího stromu. Počáteční strom
  3. Zkontrolujte, zda je strom prázdný (tj. Zda xje NIL). Pokud ano, vložte newNodejako kořenový uzel a vybarvujte jej černě.
  4. Jinak opakujte následující kroky, dokud se nedostane list ( NIL).
    1. Porovnat newKeys rootKey.
    2. Pokud newKeyje větší než rootKey, projeďte pravým podstromem.
    3. Jinak procházejte levým podstromem. Cesta vedoucí k uzlu, do kterého se má vložit newNode
  5. Přiřadit rodiče listu jako rodiče newNode.
  6. Pokud leafKeyje větší než newKey, udělejte newNodejako rightChild.
  7. Jinak udělejte newNodejako leftChild. Byl vložen nový uzel
  8. Přiřazení NULLna levé straně a rightChildna newNode.
  9. Přiřadit ČERVENOU barvu newNode. Nastavte barvu newNode červeně a přiřaďte dětem null
  10. Voláním algoritmu InsertFix zachováte vlastnost červeno-černého stromu, pokud bude porušen.

Proč jsou nově vložené uzly vždy červené v červeno-černém stromu?

Důvodem je, že vložení červeného uzlu neporušuje vlastnost hloubky červeno-černého stromu.

Pokud připojíte červený uzel k červenému uzlu, je pravidlo porušeno, ale je snazší tento problém vyřešit, než problém zavedený porušením vlastnosti depth.

Algoritmus pro udržení červeno-černé vlastnosti po vložení

Tento algoritmus se používá k udržení vlastnosti červeno-černého stromu, pokud vložení newNode tuto vlastnost porušuje.

  1. Proveďte následující kroky, dokud nadřazená newNode ppoložka nebude ČERVENÁ.
  2. Pokud pje levé dítě grandParent gPz newNode, proveďte následující.
    Případ I:
    1. Pokud je barva pravého dítěte gPze newNodeje RED, nastavit barvu obou dětí gPjako černé a barva gPje červená. Změna barvy
    2. Přiřadit gPk newNode. Změna přiřazení newNode
      Case-II:
    3. (Před přechodem k tomuto kroku, je-li smyčka zaškrtnuta. Pokud podmínky nejsou splněny, je smyčka přerušena.)
      Jinak pokud newNodeje potom správné dítě p, přiřaďte pk newNode. Přiřazení rodiče newNode jako newNode
    4. Otočení doleva newNode. Levé otočení,
      případ III:
    5. (Před přechodem k tomuto kroku, je-li smyčka zaškrtnuta. Pokud podmínky nejsou splněny, je smyčka přerušena.)
      Nastavit barvu pjako ČERNÁ a barvu gPjako ČERVENOU. Změna barvy
    6. Otočit doprava gP. Otočit doprava
  3. Jinak proveďte následující.
    1. Pokud je barva levého dítěte gPze zje RED, nastavit barvu obou dětí gPjako černé a barva gPje červená.
    2. Přiřadit gPk newNode.
    3. Jinak if newNodeis the left child of pthen, assign pto newNodeand Right-Rotate newNode.
    4. Nastavit barvu pČERNÉ a barvu gPČERVENÉ.
    5. Otočení doleva gP.
  4. (Tento krok se provede po vyjití ze smyčky while.)
    Nastavte kořen stromu jako ČERNÝ. Nastavte černou barvu kořene

Konečný strom vypadá takto:

Závěrečný strom

Python, Java a C / C ++ příklady

Python Java C C ++
# Implementing Red-Black Tree in Python import sys # Node creation class Node(): def __init__(self, item): self.item = item self.parent = None self.left = None self.right = None self.color = 1 class RedBlackTree(): def __init__(self): self.TNULL = Node(0) self.TNULL.color = 0 self.TNULL.left = None self.TNULL.right = None self.root = self.TNULL # Preorder def pre_order_helper(self, node): if node != TNULL: sys.stdout.write(node.item + " ") self.pre_order_helper(node.left) self.pre_order_helper(node.right) # Inorder def in_order_helper(self, node): if node != TNULL: self.in_order_helper(node.left) sys.stdout.write(node.item + " ") self.in_order_helper(node.right) # Postorder def post_order_helper(self, node): if node != TNULL: self.post_order_helper(node.left) self.post_order_helper(node.right) sys.stdout.write(node.item + " ") # Search the tree def search_tree_helper(self, node, key): if node == TNULL or key == node.item: return node if key < node.item: return self.search_tree_helper(node.left, key) return self.search_tree_helper(node.right, key) # Balance the tree after insertion def fix_insert(self, k): while k.parent.color == 1: if k.parent == k.parent.parent.right: u = k.parent.parent.left if u.color == 1: u.color = 0 k.parent.color = 0 k.parent.parent.color = 1 k = k.parent.parent else: if k == k.parent.left: k = k.parent self.right_rotate(k) k.parent.color = 0 k.parent.parent.color = 1 self.left_rotate(k.parent.parent) else: u = k.parent.parent.right if u.color == 1: u.color = 0 k.parent.color = 0 k.parent.parent.color = 1 k = k.parent.parent else: if k == k.parent.right: k = k.parent self.left_rotate(k) k.parent.color = 0 k.parent.parent.color = 1 self.right_rotate(k.parent.parent) if k == self.root: break self.root.color = 0 # Printing the tree def __print_helper(self, node, indent, last): if node != self.TNULL: sys.stdout.write(indent) if last: sys.stdout.write("R----") indent += " " else: sys.stdout.write("L----") indent += "| " s_color = "RED" if node.color == 1 else "BLACK" print(str(node.item) + "(" + s_color + ")") self.__print_helper(node.left, indent, False) self.__print_helper(node.right, indent, True) def preorder(self): self.pre_order_helper(self.root) def inorder(self): self.in_order_helper(self.root) def postorder(self): self.post_order_helper(self.root) def searchTree(self, k): return self.search_tree_helper(self.root, k) def minimum(self, node): while node.left != self.TNULL: node = node.left return node def maximum(self, node): while node.right != self.TNULL: node = node.right return node def successor(self, x): if x.right != self.TNULL: return self.minimum(x.right) y = x.parent while y != self.TNULL and x == y.right: x = y y = y.parent return y def predecessor(self, x): if (x.left != self.TNULL): return self.maximum(x.left) y = x.parent while y != self.TNULL and x == y.left: x = y y = y.parent return y def left_rotate(self, x): y = x.right x.right = y.left if y.left != self.TNULL: y.left.parent = x y.parent = x.parent if x.parent == None: self.root = y elif x == x.parent.left: x.parent.left = y else: x.parent.right = y y.left = x x.parent = y def right_rotate(self, x): y = x.left x.left = y.right if y.right != self.TNULL: y.right.parent = x y.parent = x.parent if x.parent == None: self.root = y elif x == x.parent.right: x.parent.right = y else: x.parent.left = y y.right = x x.parent = y def insert(self, key): node = Node(key) node.parent = None node.item = key node.left = self.TNULL node.right = self.TNULL node.color = 1 y = None x = self.root while x != self.TNULL: y = x if node.item < x.item: x = x.left else: x = x.right node.parent = y if y == None: self.root = node elif node.item < y.item: y.left = node else: y.right = node if node.parent == None: node.color = 0 return if node.parent.parent == None: return self.fix_insert(node) def get_root(self): return self.root def print_tree(self): self.__print_helper(self.root, "", True) if __name__ == "__main__": bst = RedBlackTree() bst.insert(55) bst.insert(40) bst.insert(65) bst.insert(60) bst.insert(75) bst.insert(57) bst.print_tree()
// Implementing Red-Black Tree in Java class Node ( int data; Node parent; Node left; Node right; int color; ) public class RedBlackTree ( private Node root; private Node TNULL; // Preorder private void preOrderHelper(Node node) ( if (node != TNULL) ( System.out.print(node.data + " "); preOrderHelper(node.left); preOrderHelper(node.right); ) ) // Inorder private void inOrderHelper(Node node) ( if (node != TNULL) ( inOrderHelper(node.left); System.out.print(node.data + " "); inOrderHelper(node.right); ) ) // Post order private void postOrderHelper(Node node) ( if (node != TNULL) ( postOrderHelper(node.left); postOrderHelper(node.right); System.out.print(node.data + " "); ) ) // Search the tree private Node searchTreeHelper(Node node, int key) ( if (node == TNULL || key == node.data) ( return node; ) if (key < node.data) ( return searchTreeHelper(node.left, key); ) return searchTreeHelper(node.right, key); ) // Balance the tree after deletion of a node private void fixDelete(Node x) ( Node s; while (x != root && x.color == 0) ( if (x == x.parent.left) ( s = x.parent.right; if (s.color == 1) ( s.color = 0; x.parent.color = 1; leftRotate(x.parent); s = x.parent.right; ) if (s.left.color == 0 && s.right.color == 0) ( s.color = 1; x = x.parent; ) else ( if (s.right.color == 0) ( s.left.color = 0; s.color = 1; rightRotate(s); s = x.parent.right; ) s.color = x.parent.color; x.parent.color = 0; s.right.color = 0; leftRotate(x.parent); x = root; ) ) else ( s = x.parent.left; if (s.color == 1) ( s.color = 0; x.parent.color = 1; rightRotate(x.parent); s = x.parent.left; ) if (s.right.color == 0 && s.right.color == 0) ( s.color = 1; x = x.parent; ) else ( if (s.left.color == 0) ( s.right.color = 0; s.color = 1; leftRotate(s); s = x.parent.left; ) s.color = x.parent.color; x.parent.color = 0; s.left.color = 0; rightRotate(x.parent); x = root; ) ) ) x.color = 0; ) private void rbTransplant(Node u, Node v) ( if (u.parent == null) ( root = v; ) else if (u == u.parent.left) ( u.parent.left = v; ) else ( u.parent.right = v; ) v.parent = u.parent; ) // Balance the node after insertion private void fixInsert(Node k) ( Node u; while (k.parent.color == 1) ( if (k.parent == k.parent.parent.right) ( u = k.parent.parent.left; if (u.color == 1) ( u.color = 0; k.parent.color = 0; k.parent.parent.color = 1; k = k.parent.parent; ) else ( if (k == k.parent.left) ( k = k.parent; rightRotate(k); ) k.parent.color = 0; k.parent.parent.color = 1; leftRotate(k.parent.parent); ) ) else ( u = k.parent.parent.right; if (u.color == 1) ( u.color = 0; k.parent.color = 0; k.parent.parent.color = 1; k = k.parent.parent; ) else ( if (k == k.parent.right) ( k = k.parent; leftRotate(k); ) k.parent.color = 0; k.parent.parent.color = 1; rightRotate(k.parent.parent); ) ) if (k == root) ( break; ) ) root.color = 0; ) private void printHelper(Node root, String indent, boolean last) ( if (root != TNULL) ( System.out.print(indent); if (last) ( System.out.print("R----"); indent += " "; ) else ( System.out.print("L----"); indent += "| "; ) String sColor = root.color == 1 ? "RED" : "BLACK"; System.out.println(root.data + "(" + sColor + ")"); printHelper(root.left, indent, false); printHelper(root.right, indent, true); ) ) public RedBlackTree() ( TNULL = new Node(); TNULL.color = 0; TNULL.left = null; TNULL.right = null; root = TNULL; ) public void preorder() ( preOrderHelper(this.root); ) public void inorder() ( inOrderHelper(this.root); ) public void postorder() ( postOrderHelper(this.root); ) public Node searchTree(int k) ( return searchTreeHelper(this.root, k); ) public Node minimum(Node node) ( while (node.left != TNULL) ( node = node.left; ) return node; ) public Node maximum(Node node) ( while (node.right != TNULL) ( node = node.right; ) return node; ) public Node successor(Node x) ( if (x.right != TNULL) ( return minimum(x.right); ) Node y = x.parent; while (y != TNULL && x == y.right) ( x = y; y = y.parent; ) return y; ) public Node predecessor(Node x) ( if (x.left != TNULL) ( return maximum(x.left); ) Node y = x.parent; while (y != TNULL && x == y.left) ( x = y; y = y.parent; ) return y; ) public void leftRotate(Node x) ( Node y = x.right; x.right = y.left; if (y.left != TNULL) ( y.left.parent = x; ) y.parent = x.parent; if (x.parent == null) ( this.root = y; ) else if (x == x.parent.left) ( x.parent.left = y; ) else ( x.parent.right = y; ) y.left = x; x.parent = y; ) public void rightRotate(Node x) ( Node y = x.left; x.left = y.right; if (y.right != TNULL) ( y.right.parent = x; ) y.parent = x.parent; if (x.parent == null) ( this.root = y; ) else if (x == x.parent.right) ( x.parent.right = y; ) else ( x.parent.left = y; ) y.right = x; x.parent = y; ) public void insert(int key) ( Node node = new Node(); node.parent = null; node.data = key; node.left = TNULL; node.right = TNULL; node.color = 1; Node y = null; Node x = this.root; while (x != TNULL) ( y = x; if (node.data < x.data) ( x = x.left; ) else ( x = x.right; ) ) node.parent = y; if (y == null) ( root = node; ) else if (node.data < y.data) ( y.left = node; ) else ( y.right = node; ) if (node.parent == null) ( node.color = 0; return; ) if (node.parent.parent == null) ( return; ) fixInsert(node); ) public Node getRoot() ( return this.root; ) public void printTree() ( printHelper(this.root, "", true); ) public static void main(String() args) ( RedBlackTree bst = new RedBlackTree(); bst.insert(55); bst.insert(40); bst.insert(65); bst.insert(60); bst.insert(75); bst.insert(57); bst.printTree(); ) )
// Implementing Red-Black Tree in C #include #include enum nodeColor ( RED, BLACK ); struct rbNode ( int data, color; struct rbNode *link(2); ); struct rbNode *root = NULL; // Create a red-black tree struct rbNode *createNode(int data) ( struct rbNode *newnode; newnode = (struct rbNode *)malloc(sizeof(struct rbNode)); newnode->data = data; newnode->color = RED; newnode->link(0) = newnode->link(1) = NULL; return newnode; ) // Insert an node void insertion(int data) ( struct rbNode *stack(98), *ptr, *newnode, *xPtr, *yPtr; int dir(98), ht = 0, index; ptr = root; if (!root) ( root = createNode(data); return; ) stack(ht) = root; dir(ht++) = 0; while (ptr != NULL) ( if (ptr->data == data) ( printf("Duplicates Not Allowed!!"); return; ) index = (data - ptr->data)> 0 ? 1 : 0; stack(ht) = ptr; ptr = ptr->link(index); dir(ht++) = index; ) stack(ht - 1)->link(index) = newnode = createNode(data); while ((ht>= 3) && (stack(ht - 1)->color == RED)) ( if (dir(ht - 2) == 0) ( yPtr = stack(ht - 2)->link(1); if (yPtr != NULL && yPtr->color == RED) ( stack(ht - 2)->color = RED; stack(ht - 1)->color = yPtr->color = BLACK; ht = ht - 2; ) else ( if (dir(ht - 1) == 0) ( yPtr = stack(ht - 1); ) else ( xPtr = stack(ht - 1); yPtr = xPtr->link(1); xPtr->link(1) = yPtr->link(0); yPtr->link(0) = xPtr; stack(ht - 2)->link(0) = yPtr; ) xPtr = stack(ht - 2); xPtr->color = RED; yPtr->color = BLACK; xPtr->link(0) = yPtr->link(1); yPtr->link(1) = xPtr; if (xPtr == root) ( root = yPtr; ) else ( stack(ht - 3)->link(dir(ht - 3)) = yPtr; ) break; ) ) else ( yPtr = stack(ht - 2)->link(0); if ((yPtr != NULL) && (yPtr->color == RED)) ( stack(ht - 2)->color = RED; stack(ht - 1)->color = yPtr->color = BLACK; ht = ht - 2; ) else ( if (dir(ht - 1) == 1) ( yPtr = stack(ht - 1); ) else ( xPtr = stack(ht - 1); yPtr = xPtr->link(0); xPtr->link(0) = yPtr->link(1); yPtr->link(1) = xPtr; stack(ht - 2)->link(1) = yPtr; ) xPtr = stack(ht - 2); yPtr->color = BLACK; xPtr->color = RED; xPtr->link(1) = yPtr->link(0); yPtr->link(0) = xPtr; if (xPtr == root) ( root = yPtr; ) else ( stack(ht - 3)->link(dir(ht - 3)) = yPtr; ) break; ) ) ) root->color = BLACK; ) // Delete a node void deletion(int data) ( struct rbNode *stack(98), *ptr, *xPtr, *yPtr; struct rbNode *pPtr, *qPtr, *rPtr; int dir(98), ht = 0, diff, i; enum nodeColor color; if (!root) ( printf("Tree not available"); return; ) ptr = root; while (ptr != NULL) ( if ((data - ptr->data) == 0) break; diff = (data - ptr->data)> 0 ? 1 : 0; stack(ht) = ptr; dir(ht++) = diff; ptr = ptr->link(diff); ) if (ptr->link(1) == NULL) ( if ((ptr == root) && (ptr->link(0) == NULL)) ( free(ptr); root = NULL; ) else if (ptr == root) ( root = ptr->link(0); free(ptr); ) else ( stack(ht - 1)->link(dir(ht - 1)) = ptr->link(0); ) ) else ( xPtr = ptr->link(1); if (xPtr->link(0) == NULL) ( xPtr->link(0) = ptr->link(0); color = xPtr->color; xPtr->color = ptr->color; ptr->color = color; if (ptr == root) ( root = xPtr; ) else ( stack(ht - 1)->link(dir(ht - 1)) = xPtr; ) dir(ht) = 1; stack(ht++) = xPtr; ) else ( i = ht++; while (1) ( dir(ht) = 0; stack(ht++) = xPtr; yPtr = xPtr->link(0); if (!yPtr->link(0)) break; xPtr = yPtr; ) dir(i) = 1; stack(i) = yPtr; if (i> 0) stack(i - 1)->link(dir(i - 1)) = yPtr; yPtr->link(0) = ptr->link(0); xPtr->link(0) = yPtr->link(1); yPtr->link(1) = ptr->link(1); if (ptr == root) ( root = yPtr; ) color = yPtr->color; yPtr->color = ptr->color; ptr->color = color; ) ) if (ht color == BLACK) ( while (1) ( pPtr = stack(ht - 1)->link(dir(ht - 1)); if (pPtr && pPtr->color == RED) ( pPtr->color = BLACK; break; ) if (ht link(1); if (!rPtr) break; if (rPtr->color == RED) ( stack(ht - 1)->color = RED; rPtr->color = BLACK; stack(ht - 1)->link(1) = rPtr->link(0); rPtr->link(0) = stack(ht - 1); if (stack(ht - 1) == root) ( root = rPtr; ) else ( stack(ht - 2)->link(dir(ht - 2)) = rPtr; ) dir(ht) = 0; stack(ht) = stack(ht - 1); stack(ht - 1) = rPtr; ht++; rPtr = stack(ht - 1)->link(1); ) if ((!rPtr->link(0) || rPtr->link(0)->color == BLACK) && (!rPtr->link(1) || rPtr->link(1)->color == BLACK)) ( rPtr->color = RED; ) else ( if (!rPtr->link(1) || rPtr->link(1)->color == BLACK) ( qPtr = rPtr->link(0); rPtr->color = RED; qPtr->color = BLACK; rPtr->link(0) = qPtr->link(1); qPtr->link(1) = rPtr; rPtr = stack(ht - 1)->link(1) = qPtr; ) rPtr->color = stack(ht - 1)->color; stack(ht - 1)->color = BLACK; rPtr->link(1)->color = BLACK; stack(ht - 1)->link(1) = rPtr->link(0); rPtr->link(0) = stack(ht - 1); if (stack(ht - 1) == root) ( root = rPtr; ) else ( stack(ht - 2)->link(dir(ht - 2)) = rPtr; ) break; ) ) else ( rPtr = stack(ht - 1)->link(0); if (!rPtr) break; if (rPtr->color == RED) ( stack(ht - 1)->color = RED; rPtr->color = BLACK; stack(ht - 1)->link(0) = rPtr->link(1); rPtr->link(1) = stack(ht - 1); if (stack(ht - 1) == root) ( root = rPtr; ) else ( stack(ht - 2)->link(dir(ht - 2)) = rPtr; ) dir(ht) = 1; stack(ht) = stack(ht - 1); stack(ht - 1) = rPtr; ht++; rPtr = stack(ht - 1)->link(0); ) if ((!rPtr->link(0) || rPtr->link(0)->color == BLACK) && (!rPtr->link(1) || rPtr->link(1)->color == BLACK)) ( rPtr->color = RED; ) else ( if (!rPtr->link(0) || rPtr->link(0)->color == BLACK) ( qPtr = rPtr->link(1); rPtr->color = RED; qPtr->color = BLACK; rPtr->link(1) = qPtr->link(0); qPtr->link(0) = rPtr; rPtr = stack(ht - 1)->link(0) = qPtr; ) rPtr->color = stack(ht - 1)->color; stack(ht - 1)->color = BLACK; rPtr->link(0)->color = BLACK; stack(ht - 1)->link(0) = rPtr->link(1); rPtr->link(1) = stack(ht - 1); if (stack(ht - 1) == root) ( root = rPtr; ) else ( stack(ht - 2)->link(dir(ht - 2)) = rPtr; ) break; ) ) ht--; ) ) ) // Print the inorder traversal of the tree void inorderTraversal(struct rbNode *node) ( if (node) ( inorderTraversal(node->link(0)); printf("%d ", node->data); inorderTraversal(node->link(1)); ) return; ) // Driver code int main() ( int ch, data; while (1) ( printf("1. Insertion 2. Deletion"); printf("3. Traverse 4. Exit"); printf("Enter your choice:"); scanf("%d", &ch); switch (ch) ( case 1: printf("Enter the element to insert:"); scanf("%d", &data); insertion(data); break; case 2: printf("Enter the element to delete:"); scanf("%d", &data); deletion(data); break; case 3: inorderTraversal(root); printf(""); break; case 4: exit(0); default: printf("Not available"); break; ) printf(""); ) return 0; )
// Implementing Red-Black Tree in C++ #include using namespace std; struct Node ( int data; Node *parent; Node *left; Node *right; int color; ); typedef Node *NodePtr; class RedBlackTree ( private: NodePtr root; NodePtr TNULL; void initializeNULLNode(NodePtr node, NodePtr parent) ( node->data = 0; node->parent = parent; node->left = nullptr; node->right = nullptr; node->color = 0; ) // Preorder void preOrderHelper(NodePtr node) ( if (node != TNULL) ( cout right); ) ) // Inorder void inOrderHelper(NodePtr node) ( if (node != TNULL) ( inOrderHelper(node->left); cout left); postOrderHelper(node->right); cout left, key); ) return searchTreeHelper(node->right, key); ) // For balancing the tree after deletion void deleteFix(NodePtr x) ( NodePtr s; while (x != root && x->color == 0) ( if (x == x->parent->left) ( s = x->parent->right; if (s->color == 1) ( s->color = 0; x->parent->color = 1; leftRotate(x->parent); s = x->parent->right; ) if (s->left->color == 0 && s->right->color == 0) ( s->color = 1; x = x->parent; ) else ( if (s->right->color == 0) ( s->left->color = 0; s->color = 1; rightRotate(s); s = x->parent->right; ) s->color = x->parent->color; x->parent->color = 0; s->right->color = 0; leftRotate(x->parent); x = root; ) ) else ( s = x->parent->left; if (s->color == 1) ( s->color = 0; x->parent->color = 1; rightRotate(x->parent); s = x->parent->left; ) if (s->right->color == 0 && s->right->color == 0) ( s->color = 1; x = x->parent; ) else ( if (s->left->color == 0) ( s->right->color = 0; s->color = 1; leftRotate(s); s = x->parent->left; ) s->color = x->parent->color; x->parent->color = 0; s->left->color = 0; rightRotate(x->parent); x = root; ) ) ) x->color = 0; ) void rbTransplant(NodePtr u, NodePtr v) ( if (u->parent == nullptr) ( root = v; ) else if (u == u->parent->left) ( u->parent->left = v; ) else ( u->parent->right = v; ) v->parent = u->parent; ) void deleteNodeHelper(NodePtr node, int key) ( NodePtr z = TNULL; NodePtr x, y; while (node != TNULL) ( if (node->data == key) ( z = node; ) if (node->data right; ) else ( node = node->left; ) ) if (z == TNULL) ( cout << "Key not found in the tree"  left == TNULL) ( x = z->right; rbTransplant(z, z->right); ) else if (z->right == TNULL) ( x = z->left; rbTransplant(z, z->left); ) else ( y = minimum(z->right); y_original_color = y->color; x = y->right; if (y->parent == z) ( x->parent = y; ) else ( rbTransplant(y, y->right); y->right = z->right; y->right->parent = y; ) rbTransplant(z, y); y->left = z->left; y->left->parent = y; y->color = z->color; ) delete z; if (y_original_color == 0) ( deleteFix(x); ) ) // For balancing the tree after insertion void insertFix(NodePtr k) ( NodePtr u; while (k->parent->color == 1) ( if (k->parent == k->parent->parent->right) ( u = k->parent->parent->left; if (u->color == 1) ( u->color = 0; k->parent->color = 0; k->parent->parent->color = 1; k = k->parent->parent; ) else ( if (k == k->parent->left) ( k = k->parent; rightRotate(k); ) k->parent->color = 0; k->parent->parent->color = 1; leftRotate(k->parent->parent); ) ) else ( u = k->parent->parent->right; if (u->color == 1) ( u->color = 0; k->parent->color = 0; k->parent->parent->color = 1; k = k->parent->parent; ) else ( if (k == k->parent->right) ( k = k->parent; leftRotate(k); ) k->parent->color = 0; k->parent->parent->color = 1; rightRotate(k->parent->parent); ) ) if (k == root) ( break; ) ) root->color = 0; ) void printHelper(NodePtr root, string indent, bool last) ( if (root != TNULL) ( cout << indent; if (last) ( cout << "R----"; indent += " "; ) else ( cout  right, indent, true); ) ) public: RedBlackTree() ( TNULL = new Node; TNULL->color = 0; TNULL->left = nullptr; TNULL->right = nullptr; root = TNULL; ) void preorder() ( preOrderHelper(this->root); ) void inorder() ( inOrderHelper(this->root); ) void postorder() ( postOrderHelper(this->root); ) NodePtr searchTree(int k) ( return searchTreeHelper(this->root, k); ) NodePtr minimum(NodePtr node) ( while (node->left != TNULL) ( node = node->left; ) return node; ) NodePtr maximum(NodePtr node) ( while (node->right != TNULL) ( node = node->right; ) return node; ) NodePtr successor(NodePtr x) ( if (x->right != TNULL) ( return minimum(x->right); ) NodePtr y = x->parent; while (y != TNULL && x == y->right) ( x = y; y = y->parent; ) return y; ) NodePtr predecessor(NodePtr x) ( if (x->left != TNULL) ( return maximum(x->left); ) NodePtr y = x->parent; while (y != TNULL && x == y->left) ( x = y; y = y->parent; ) return y; ) void leftRotate(NodePtr x) ( NodePtr y = x->right; x->right = y->left; if (y->left != TNULL) ( y->left->parent = x; ) y->parent = x->parent; if (x->parent == nullptr) ( this->root = y; ) else if (x == x->parent->left) ( x->parent->left = y; ) else ( x->parent->right = y; ) y->left = x; x->parent = y; ) void rightRotate(NodePtr x) ( NodePtr y = x->left; x->left = y->right; if (y->right != TNULL) ( y->right->parent = x; ) y->parent = x->parent; if (x->parent == nullptr) ( this->root = y; ) else if (x == x->parent->right) ( x->parent->right = y; ) else ( x->parent->left = y; ) y->right = x; x->parent = y; ) // Inserting a node void insert(int key) ( NodePtr node = new Node; node->parent = nullptr; node->data = key; node->left = TNULL; node->right = TNULL; node->color = 1; NodePtr y = nullptr; NodePtr x = this->root; while (x != TNULL) ( y = x; if (node->data data) ( x = x->left; ) else ( x = x->right; ) ) node->parent = y; if (y == nullptr) ( root = node; ) else if (node->data data) ( y->left = node; ) else ( y->right = node; ) if (node->parent == nullptr) ( node->color = 0; return; ) if (node->parent->parent == nullptr) ( return; ) insertFix(node); ) NodePtr getRoot() ( return this->root; ) void deleteNode(int data) ( deleteNodeHelper(this->root, data); ) void printTree() ( if (root) ( printHelper(this->root, "", true); ) ) ); int main() ( RedBlackTree bst; bst.insert(55); bst.insert(40); bst.insert(65); bst.insert(60); bst.insert(75); bst.insert(57); bst.printTree(); cout << endl << "After deleting" << endl; bst.deleteNode(40); bst.printTree(); )  

Zajímavé články...